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We investigate the behavior of the spectrum of singularities associated with the 
invariant measure of some dynamical systems under nonsmooth coordinate 
changes. When the homeomorphic conjugacy is not Lipschitz continuous, we 
discuss how its singularities can affect the whole set of generalized fractal dimen- 
sions. We give applications to homeomorphisms that conjugate critical circle 
maps with irrational (golden mean) winding numbers. We present numerical 
studies corroborating the theoretical predictions. 
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1. I N T R O D U C T I O N  

Much interest has been paid recently to the so-called generalized fractal 
dimensions.~l 4) First defined by Renyi, (l) these dimensions have been 
shown to be intimately related to the spectrum of singularities associated 
with a probability measure p.(5 7) In the context of dynamical systems, 
# is a measure that is invariant under the dynamics. ~8) For the sake of 
simplicity we work in this paper with one-dimensional dynamical systems, 
although we hope that some of our results can be extended to higher 
dimensions. We assume that p is concentrated on [-0, 1 ], i.e., p([0, 1 ] ) =  1, 
where {IV}N is the uniform partition of [0, 1] by intervals of length 1/N. 
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Then, using the thermodynamic formalism, ~176 one 
partition function Zjv(fl), which is defined for f le  R by 

can introduce a 

ZN(fl)= ~ I~(I) ~ (1.1) 
I E  { I U } N  

Hence it is natural to define the uniform free energy FU(fl) of the 
measure tt when the following limit exists: 

FL'(fl)= lim --log Zu(fl)/log(N ) (1.2) 
N ~  + c o  

Formally deriving (1.1) shows that in general FU(fl) is convex in fl; 
then, Legendre-transforming FU(fl), one gets the Gibbs free energy Gu(a), 

(1.3) GU(a) = aft -- FV(fl), ~ = dFU(fl)/dfl 

The Gibbs free energy is also called the spectrum of singularities (5 7) of the 
measure/z; the generalized fractal dimensions are defined by 

D~ = (fl - 1) -~ FV(fl) (1.4) 

These definitions can be understood by exploring the singular 
behavior of the measure g(I),-, [L( I ) ]  ~ in the limit of zero Lebesgue 
measure [L(I) - -*0]  for the interval /. Let us introduce the two scaling 
functions ~ + (x) and ~- (x) ,  which describe the local singularity strength (1~) 
of p, 

~+(x) = lim sup log #(/)/log L(I)  (1.5) 
x ~ I , L ( 1 )  ~ 0 

(x) = lim inf log/~(I)/log L(I)  (1.6) 
x ~ I , L ( 1 )  ~ 0 

Then the main question which has been addressed in Refs. 7 and 11 is: 
What can we say about the sets M + and M~ as defined by 

M~ + = { x ~ I t a + - ( x ) = ~ }  (1.7) 

and which correspond, respectively, to sets of points where the singular 
behavior of/~ is governed by the same exponent ~ ~ R? When /~ is the 
invariant measure of a regular, locally expanding Markov map, it has been 
shown rigorously (11) that the Hausdorff dimensions (HD) of M + and M~- 
are equal to each other and to the Gibbs free energy, 

H D ( M  + ) = H D ( M j )  = GU(a) (1.8) 
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Although the interpretation of GU(c~) remains unclear for more general ~, 
we shall assume that this result applies to the set of measures we shall 
investigate in the remainder of this paper. 

As reported in Refs. 12 and 13, the generalized fractal dimensions D~ 
as well as the uniform Gibbs free energy GV(~) are quantities that are 
measurable from experimental data. This raises the question of the actual 
invariance of these functions under some coordinate changes. In a recent 
paper, (14) some examples are given to illustrate that some dimensions are 
invariant and some are not under changes of variables that are differen- 
tiable except at a finite number of points. The aim of the present paper is to 
show that the whole spectrum of singularities of/~ and in addition the 
whole set of generalized fractal dimensions may be drastically affected by 
nonsmooth coordinate changes. Our goal is not only to demonstrate this 
effect, but also to try to quantify the alteration of D~ and GV(c~) in terms of 
the singularities of the associated homeomorphic conjugacy. 

This paper is organized as follows. In Section 2 we show that, under 
some working hypotheses, the functions FV(/3) and G~(e) are invariant 
under Lipschitz continuous changes of coordinates. When the change of 
variables does not satisfy this requirement, we discuss how the singularities 
of the homeomorphic conjugacy affect the spectrum of singularities of the 
measure #. In Section 3 we give applications to homeomorphisms that 
conjugate critical circle maps with irrational winding numbers. (15) We 
derive relations between the spectrum of singularities of critical circle maps 
that belong to different universality classes (15 17) and present numerical 
studies confirming the theoretical predictions. We conclude in Section 4 
and review some important examples of measures arising in one- 
dimensional dynamical systems for which our theoretical results are likely 
to apply. We comment about the generalization of these results to higher 
dimensional dynamical systems. 

2. H O M E O M O R P H I C  C O N J U G A C I E S  OF 
D Y N A M I C A L  S Y S T E M S  

2.1. Basic Results 

Two dynamical systems fl:  [0, 1] ~ [0, 1] and f2: [0, 1] --* [0, l]  
with respective invariant measures #1 and #2 are said to be conjugate if 
there exists a homeomorphism (change of coordinates) h: [0, 1] -,  [0, 1] 
such that 

f2=h-lofloh (2.1) 

#2(I)=#l(hI), VIc [0, 1] (2.2) 



998 Arneodo and Holschneider 

where I is any measurable subset of [0, 1 ]. By definition h is a continuous 
and strictly monotone function. Hence, one can associate to h the following 
measures: 

#h(I) = L(hI) (2.3) 

#h- l ( I )=L(h  1I) (2.4) 

where L denotes the Lebesgue measure. The scaling exponents (1.5) and 
(1.6) of these measures ~{(x) and a~l(x)  are local Holder exponents of h 
and h -1, respectively. A straightforward calculation shows that these 
exponents are not independent, but satisfy the relation 

~-(x) .  ~ff_,(hx)= 1 (2.5) 

This identity merely means that if h scales at x with the exponent a, then 
h-1 will scale at hx with the exponent 1/a. 

One of our basic hypotheses in this paper is to assume that all the 
measures scale exactly, i.e., the lim sup (respectively inf) can be replaced by 
the simple limit 

, (x)  = , + ( x ) =  a (x) (2.6) 

and this for "h and ~h i as well as for the scaling exponents ~1 and 0~ 2 
associated with #1 and #2, respectively. This assumption is in general too 
strong and it is very likely that our results still hold under much weaker 
conditions. Unfortunately, we have not been able to extend our proof to 
more general situations. 

Within this hypothesis, it is easy to determine how the scaling 
functions , l (x)  and ~2(x) are related by the singularities of the 
homeomorphism h which conjugates the two dynamics. From 

~2(x) = lim log #2(I)/log L(I) = lim log #1(hi)/log L(I) 
x E I , L ( 1 )  ~ 0 x E I , L ( I )  ~ 0 

one gets [upon multiplying the right-hand side of this equality by 
log L(hI)/log L(hI) = 1 ] the relation 

~2(X) = lim [log #1(hi)/log L(hI)]. [log L(hI)/log L(I ) ]  
x ~ I , L ( I )  ~ 0 

= ~,(hx). ~h(X) (2.7) 

Then, using (2.5), we deduce an additional relation 

C, l (hX)  = ~ 2 ( x )  " c , h - , ( h x )  (2.8) 
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which describes the local interaction of the singularities of the 
homeomorphic conjugacy with the singularities of the invariant measure. 

2.2. Lipschitz Continuous Homeomorphic Conjugacies 

It immediately follows from (2.7) that if the homeomorphism h is 
Lipschitz continuous, i.e., c%(x) = c~ h l(x) = 1, then the scaling functions are 
invariant under h, 

:q(hx) = c~2(x ) (2.9) 

Therefore, the sets M~ ~) and M~ 2~ associated via (1.5)-(1.7) with #1 and #2, 
respectively, are mapped under h onto each other as 

M~ ~ = hM~ 2~ (2.10) 

Since the Hausdorff dimension is invariant under a Lipschitz continuous 
change of variables, (~s) this implies from (1.8) that the spectra of 
singularities o f / ~  and/~z are the same 

G~(c~) = G2~(~) (2.11) 

Consequently, from (1.2)-(1.4), we end with the result that the uniform free 
energy FU(fl) and the generalized fractal dimensions D~ are invariant under 
a Lipschitz continuous homeomorphic conjugacy. 

2.3. Homeomorphisms that Conjugate a Dynamical System to 
its Inverse 

Among the nonsmooth homeomorphic conjugacies, let us first 
consider the class of homeomorphisms that conjugate f to f -  i, i.e., such 
that h = h l. Then, from (2.5) one obtains c~h(hx ) = 1/ah(x), which means 
that h maps onto each other the sets M~ and M~/~ ~ [0, 1 ], 

Mh~ = hM~/~ (2.12) 

But by definition h scales at each point of M~/~ with an exponent l/a; thus, 
it follows that the Hausdorff dimension of this set in general is multiplied 
by c~. This results in the relation 

Gh(c~) = ~Gh(1/c~) (2.13) 

which Legendre-transforms into 

FhoFh=id (2.14) 
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Because the invariant measure of a dynamical system is not only 
invariant u n d e r f b u t  also u n d e r f  ~, the relations (2.13) and (2.14) are of 
main interest in the context of this paper. 

2.4. Homeomorphisms that Conjugate Some Dynamical 
Systems to Ones with Nonsingular Invariant Measure 

In general the singularities of h will interact with those of the measure 
p, yielding nontrivial behavior of the Gibbs free energy under h. Of 
particular interest are the homeomorphisms that conjugate a dynamical 
system f l  to a dynamical system f2 with nonsingular invariant measure, i.e., 
e2(x) = 1. Then from (2.8) one gets 

cq(x) = c~h-~(x) (2.15) 

This relation tells us that the sets M(~ ~) and M~ ~c [0, 1], where p~ and 
/~h i behave, respectively, with the same scaling exponent e, are identical; 
consequently, they have the same Hausdorff dimension 

GU(cQ = Gh ~(~) (2.16) 

Now from (2.5) one deduces easily that 

M~ ~ = hMh/~ (2.17) 

Since by definition h scales at every point of Mhl/~ with an exponent l/a, the 
Hausdorff dimension in general is multiplied by ct and (2.16) becomes 

G~(~) = Gh-~(c~) = c~Gh(1/~) (2.18) 

Therefore, from the relation (2.16) between the spectrum of singularities of 
#~ and that of the homeomorphic conjugacy, it is easy to conclude that the 
corresponding free energies satisfy 

FU(/~) = Fh_~(/3) (2.19) 

that is, by Eq. (1.3), the generalized fractal dimensions Dz associated with 
Pl are the same as those associated with Ph ~. Moreover, the well-known 
properties of the Legendre transform allow us to transform (2.18) into the 
following identity: 

F h ~oFh= id (2.20) 

2.5. Relation between the Uniform Free Energy and the 
Dynamical Free Energy 

Instead of taking the equipartition {IV}N to define the uniform free 
energy FV(fl) in (1.2), it may be more convenient, as already suggested by 
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several numerical studies, (19) to work with the dynamical partition as 
defined by /~D(I)= 1/N, V i e  {ID}N, and to consider the dynamical free 
energy: 

{ }/ l i r a - - l o g  ~ [L(I)] ~ log(N) (2.21) 
F D ( f l )  -= N ~  +oe I c  {ID}N 

We wish to establish a relation between F U and F D. Let h be the 
homeomorphism that conjugates a dynamics f with invariant measure/~I to 
a dynamics having L as invariant measure. As is easily seen from (2.2), we 
have #F(hI v) = L ( I  v) = 1/N. This shows that I D = hi  t:, and from L ( I  ~  = 
L (h I  c~) = #h(I  v) one gets 

FD(~ ) = Fh(~ ) (2.22) 

Now from (2.4) one can also write # f ( 1 U ) = L ( h - ~ I D ) = # h - l ( I D  ), which 
leads to 

FU(~) = Fh t(fl) (2.23) 

Then from the identity (2.20) one deduces easily that the dynamical free 
energy is the inverse function of the uniform free energy: 

F D o F U = id (2.24) 

This result was first discovered in Ref. 11, but with a different proof 
and under different hypotheses. It follows from the Legendre transform 
properties that the spectrum of singularities computed with the dynamical 
partition can be derived from the spectrum of singularities computed with 
the equipartition (and vice versa) according to the relation [see (2.18)] 

GD(cr = ~GU(1/cr (2.25) 

3. FRACTAL DIMENSIONS OF THE GOLDEN MEAN 
TRAJECTORIES AT THE ONSET OF CHAOS 

3.1. Circle Map Models for the Transition from 
Quasiperiodicity to Chaos 

In the past few years there has been much interest in the study of the 
universal properties of the transition to chaos. ~2~ Among the well- 
known scenarios, special attention has been paid to the transition 
from quasiperiodicity with two incommensurate frequencies to "weak 
turbulence." The usual approach consists in modeling the Poincar6 surface 
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section with invertible analytic maps of the annulus. (24 26) In the limit of 
infinite area contraction, these maps reduce to analytic maps of the circle. 
A prototype of such maps is the two-parameter sine family, (27) 

(s) 0 K/2z sin(2zO.) 0~+ ~ = f K, a( n ) = O ~ + f 2 -  (3.1) 

where the parameter K provides the strength of the nonlinearities and the 
parameter f2 sets the rate of rotation. Let W* = ( x / 5 -  1)/2 be the golden 
mean. Then for every K <  1, there exists a f2*(K) such that the winding 
number 

W(K, f2)  = l ira [ f ( / ( s~ (0 )  - O]/n (3 .2 )  

is strictly equal to W(K, (2*(K)) = W*. The mapping (3.1) is the lift of a 
diffeomorphism of the circle, i.e., JK.,,'~(sk mod 1 is a diffeomorphism of the 
circle. Since W* belongs to the set of winding numbers defined by 

-~(s). is analytically conjugated to a pure rotation f~ . ) ,  Herman, (28) JK,s~ 

O,,+l-= f(wn).(O,,)=On+ W* (3.3) 

where the shift (which is also the winding number of the mapping) is equal 
to the golden mean W*. Since, from the previous section, the spectrum of 
singularities is invariant under a smooth change of variables, the spectrum 
of  singularities of the golden mean trajectory in the sine map is the same as 
for a pure rotation, i.e., it is trivial (29) with a single index e = 1. This implies 
that the corresponding generalized fractal dimensions are identically 
D ~ = I .  

At K =  1, the sine map fails to be a diffeomorphism, i.e., c(s)-' is not J K, O* 

differentiable everywhere, because of the cubic inflection point. From now 
on we shall write f ~ )  instead oj~ J~r 1.a. This critical line is of physical 
interest, since it marks the onset of chaos for quasiperiodic 
trajectories.(ls 17) Shenker(~S) was the first one to discover how the univer- 
sal properties of this scenario are related to the nature of the inflection 
point of the critical circle map. He found that the distances around 0 = 0 
scale down by a universal factor %m = 1.2885 .... when the superstable 
golden-mean trajectory is truncated at two consecutive Fibonacci numbers 
(Fo=0,  F 1= 1 and Fn=Fn_l  + F n - 2  for n>~2), 

%m = l i m  I[{f~2}Fo-~(O)--Fn]/[{f~2}F"(O)--F.+I]I (3 .4 )  
n ~ + c r  

The distance between the origin and its nearest neighbor is in fact the 
largest distance separating two neighboring points of the superstable orbit 
(zero belongs to the orbit) with winding number W, = F,/Fn+I as corn-  
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puted with f ~ )  for f2 = D , .  (The W, are the Farey approximants of the 
golden mean.) It corresponds to the most rarefied region on the circle and 
thus will be the leading contribution in the dynamical free energy (2.21) in 
the limit fl ~ +oo. Denote by #~ the invariant measure o f f ~  ). Then 

#~,(E0, {f~o)}F"(0)]) = 1/F,+ ~ ~ W*" 

where {f(~n)}F"(0) is the nearest neighbor to the origin. From Shenker's 
results, one knows that 

Then one gets 

L([O, {f~2 } ~.(0) ]) ~ ~m " 

lim F ~  lira (logc%~7)/logF,+l 
, 8 ~  + o o  n ~  + o o  

~ - f l  log %m/lOg W* (3.5) 

Then, via the Legendre transformation, one obtains a lower bound for the 
scaling exponent of the invariant measure as computed with the dynamical 
partition Go(c0: 

~ m i n  = --log ~gm/log W* (3.6) 

From the cubic nature of the inflection point, the most rarefied region 
of the trajectory is mapped onto the most concentrated region, 

lim log L(f~2(I)) / log L(I)  = 3 (3.7) 
x--OEI, L( I )~O 

This region will be the leading contribution in the dynamical free energy in 
the limit fl ~ -0% 

lim FD(fl) --, --3fl log C%~/log W* (3.8) 

from which one can deduce an upper bound for the scaling exponent e, 

C~ma x = --3 log egm/1og W* (3.9) 

Now if one make use of the relations (2.18), (2.20), and (2.24) between 
the dynamical and uniform Gibbs free energies, (3.6) and (3.9) lead to the 
following universal prediction for the range of scaling exponent as 
computed with the uniform partition GV(cO, (7) 

e [~(f~.~(0)), ~(0)3 

e E-�89 W*/log %m, --log W*/log ~gm] (3.10) 



1004 Arneodo and Holschneider 

At this point let us mention that in the remainder of this section we will 
work with the uniform partition, but for the sake of simplicity in the 
notation we will omit the superscript U. 

In light of this theoretical result, it is important to note that in Ref. 7, 
numerical simulations of different cubic maps strongly suggest that not 
only the range of scaling exponent, but the whole spectrum of singularities 
of the golden mean orbits is universal at the onset of chaos. Recent 
measurements in a periodically forced Rayleigh-Benard experiment have 
confirmed the theoretical speculations. (12) 

To check for universality, it is important to investigate critical circle 
maps that differ in the order of the inflection point. In this section we 
mainly consider the one-parameter family 

12 1 z z ~(zl,O , _ (  + (  / ) 0 m o d l ,  0<1 /2  
J a t  J - ~ f 2 + l - ( 1 / 2 ) l - z ( 1 - O ) Z m o d l ,  0>~1/2 (3.11) 

As for the critical sine map (3.1), the inflection point o f f ~  ) is 0 = 0, but its 
order is z. We shall denote by hz,z, the homeomorphism that conjugatesf~.) 
to f(z') 

J . Q *  

f~'.) = hL!  o f~) .  o hz,z, (3.12) 

The thermodynamic quantities of the measure/~z,z, associated with hz,z, will 
be the free energy Fz,~,(3) and the Gibbs free energy G:,~,(c~). We shall 
replace z or z' by S or R when will refer to the sine map (3.1) or the shift 
map (3.3). 

Numerical Algorithm to Compute F~,z,(B) and Gz,z,(a). The 
algorithm we use to estimate numerically Fz,z,(3) and G~,~,(~) consists in 
approaching the superstable golden mean trajectories of f~). and f~;) by 
successive Farey truncations W , = F , / F , + ~  to the continued fraction 
expansion of W*. We determine g2(, z) and g?(,~') such that ja,,~(:) and f ~ )  
display a W,-cycle containing the origin. Then we construct the partition 
function 

Fn+ l 

I~([3, r~,z, ) = ~, [I}~)]4/[l}~')] F~,~" (3.13) 
i = 1  

where l} z) - 0 (~) - O} ~ - ~+ F, are the distances between next neighboring points in 
the trajectory generated by r(z) Then, assuming that the measure #z,~, 

J . O  n �9 

possesses an exact recursive structure, one deduces the free energy F~,~, 
from the requirement that 

/~(3, F~,~,) = 1 (n--* +oo) (3.14) 
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To improve the convergence of the free energy curve Fz,z,(/~) as W, --* W*, 
we make use of the ratio trick usually employed in similar 
computations (7,29) 

I~( f l ,  gz ,z , ) / I  ~ -  '(/?, Fz,z, ) = 1 (3.15) 

Then we Legendre transform F~,z,(/~) to extract the Gibbs free energy 
G=,z,(c~) [see (1.3)]. 

3.2. Homeomorphisms that Conjugate Critical Circle Maps 
to a Pure Rotation 

As discussed in Ref. 17, the (incremental) homeomorphism that 
conjugates a (cubic) critical circle map to a diffeomorphism with the same 
winding number, if it exists, is nowhere differentiable. In particular, this is 
true for the homeomorphisms that conjugate any of the critical maps f~,) 
with golden mean winding number W =  W* to a pure rotation of angle 
W*. Figure la illustrates the homeomorphism hs,R that conjugates the 
critical sine map (3.1) t~s) to the shift map (3.3) J v e . .  J a *  r(R~ Since f~2  has a 
critical point at the origin, hs,R must have (~7) infinite derivative at zero 
and/or zero derivative at W*. As shown in Fig. la, when enlarging some 
part of the homeomorphic conjugacy one can show that both singularities 
are present at nl W * - n 2  with nl < 0  as created by the action o f f  1 and 
with n~ > 0 as created by f. 

According to Eq. (2.19), the free energy Fs(fl) should be equal to 
F%,~(/?), which can be denoted as FR,s(/?) from (3.13) and (3.15). In Fig. lb, 
we present the spectrum of singularities associated with /~s, which from 
(2.16) is equal to 

Gs(c~) = G,,s(C~) (3.16) 

This spectrum is in remarkable agreement with the ' f (~)" spectrum com- 
puted directly from the sine map in Ref. 7. This can be understood very 
easily since, from (3.13), 

Fn+ I 

F(fl, r.,s)= 
i = 1  

1 r.+l 
- -  [Fn+,]/~ E [/~ s)]-Fms (3.17) 

i ~ l  

where we have used the fact that the trajectory points of the rotation 
operation are uniformly distributed on the circle. Equation (3.17) is 
the partition function from which Halsey e t a L  (7) defined and measured 
what they named the generalized fractal dimensions D u and the spectrum 
of singularities f ( e )  and which have to be identified as DR,s(/~)= 
( /~-  1)-1 FR,s(/?) and GR,S(CQ, respectively, 
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0 0.5 
0 
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(b) 

\ 

0.5 1.0 1.5 

\ 
2.0 

Fig. 1". (a) The homeomorphism hs,R, which conjugates the critical sine map (3.1) with K= 1 
and (2 = ~2" with the shift map (3.3) with winding number W= W*. The insert corresponds to 
an enlargement of the square A. (b) The corresponding Gibbs free energy GR,S(~) = Gh~.~(~) as 
computed via (3.13) and (3.15), 

3.3. Homeomorphisms that  Conjugate T w o  Crit ical Circle 
Maps  in the Same Class of Universal i ty 

It  was conjec tured  in Ref. 17 tha t  the universal  p roper t ies  of the 
cri t ical  golden  mean  t ra jector ies  reflect the fact tha t  the h o m e o m o r p h i s m  
that  conjugates  two circle maps  with the same inflection po in t  is a once 
con t inuous ly  differentiable d i f feomorphism.  In Fig. 2a we c ompu te  the 
h o m e o m o r p h i s m  hs,3 tha t  conjugates  the cri t ical  sine m a p  (3.1) f~2 to r~3) J g 2 *  
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defined in (3.11). In contrast to hs, R, there is no evidence of any singularity 
in hs,3 and this can be seen at any scale when enlarging any part of this 
function. This smoothness results in a trivial Gibbs free energy 
Gs,3(~ = 1) = 1, as can be checked in Fig. 2b, where we compute Gs,3(c0 for 
different Farey approximants IV, of the golden mean using (3.13) and 
(3.15). When we proceed in the Farey sequence, the range of c~ values 
reduces considerably and the whole Gs,3(7) curve shrinks dramatically as n 
increases. Since we have performed our computation by fixing arbitrarily 
f lmax = - - f l m a x  = 150, we notice that Gs,3(~ ) n o t  only shrinks, but its end 

( 
0,5 

0 -~ 
0 

0 . 1 ~  

(a) 

0.5 
0 

1 

r~ 

0.5 

- -  n=4 
....... I1=8 

....... n=12 

0,9 1.0 1, l  

Fig. 2. (a) The homeomorphism hs,3, which conjugates the critical sine map (3.1) with K =  1 
and g2 = (2" with the critical cubic map (3.11)f~2. The insert corresponds to an enlargement 
of the square A. (b) The corresponding Gibbs free energy Gs,3(~ ) as computed via (3.13) and 
(3.15) with different Farey approximants W, = F,,/F,, +1 of the golden mean. 
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points (corresponding to these extremal values of fi) take off from zero and 
converge to 1, which strongly suggests that Gs,3(a) actually reduces to one 
point in the asymptotic limit n ~ + ~ .  Hence, for n = 12 (W~2 = 144/233), 
the scaling is almost trivial with D~ = ( f l -  1) -1 Fs,3(fl) ~ 1 for values of [fll 
up to ~ 100. 

Our numerical experiments clearly indicate that this result is very 
likely to extend to any universality class and to any irrational winding 
number with a periodic continued fraction expansion. Therefore, given two 
critical quasiperiodic trajectories, the computation of the spectrum of 
singularities of the associated homeomorphic conjugacy can be used as a 
test to decide whether the underlying dynamical system belongs to the 
same universality class. The condition G~,~,(~)= 6~,~ is a sufficient but not a 
necessary condition for Gz(a) and G~,(a) to be identical, as we will illustrate 
in Section 3.5. 

3.4. Homeomorphisrns that Conjugate Two Critical Circle 
Maps in Different Classes of Universality 

In Fig. 3 we show the homeomorphism hs,l/2, which conjugates the 
critical sine map (3.1) ~a*f(s) to the critical map (3.11 )f(~/.2) with an inflection 
point of order z = 1/2. This homeomorphism is singular, as the com- 
putation of the Gibbs free energy Gs,I/2 in Fig. 3b strongly suggests. 
Obviously the scaling is nontrivial, and the range of ~ values characterizing 
the singularity of the associated measure ~ts,~/2 is finite, with am~x = 6~min. 

This numerical finding can be understood theoretically, since the 
support [ami,, ama~] of G~,z,(a) can be calculated exactly. Because the 
inflection point of f~.) is mapped onto that of f(~.) under h~,~,, then 
h~s(0 ) = 0. Moreover, from (2.7) we know that h~,~, scales at zero with the 
exponent 

~z,z,(0) = ~z,(0)/~z(0) (3.18) 

where ~z(0) and az,(0) are the scaling exponents at the origin associated 
with the measures #z and /~z, of f~.) and va,r(z'), respectively. Now, by 
definition from Eq. (2.1) we know that 

hz, z,[f~.)(0)] = f~.)[hz, z,(0)] = f~,)(0) 

and consequently h~,z, will scale around f~.)(0) with the scaling exponent 

otz,z,(f~).(O)) = zez , (O)/z '%(O) (3.19) 
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Equat ions  (3.18) and (3.19) define the smallest and largest exponents  of 
/~z,z,. As discussed in Section 3.5, ~ ( 0 )  [like ct3(0 ) in Section 3.1] can be 
expressed as a function of Shenker 's c o n s t a n t  ~ g m ( Z )  [see (3.10)], 

~r = - l o g  W*/log ~ g m ( Z )  (3.20) 

and we end with the following predict ion for the support  of Gz,z,(e): 

supp Gz, z , (e)=  [min, max]  {~z,(O)/~z(O), z~z,(O)/z':G(O)} 

= [min,  m ax ]  {log egm(z)/log :%m(z'), z log 7gm(Z)/Z' log %m(Z')} (3.21) 

1[ (a) 

rm" ' 

0.5 f - -  # 
0.2 

0 0.5 
o 

(b) 
1 

r.9 
D 

0.5 

0 
l 2 

Fig. 3. (a) The homeomorphism hs,l/2, which conjugates the critical sine map (3.1) with 
If= 1 and ~2 = f2* with the critical map (3.11) f~/fl( The insert corresponds to an ehlargement 
of the square A. (b)The corresponding Gibbs free energy Gs,l/2(a) as computed via (3.13) and 
(3.15). 
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From the universality hypothesis and the computation of 0~gm(Z ) (see 
Fig. 6a), one gets 

supp Gs,1/2(o~ ) = [0,3864..., 2.318...] (3.22) 

which is in complete agreement with our numerical simulations in Fig. 3b. 
Unfortunately, there exists no equivalent prediction for the spectrum 

of singularities G~,z,(e). From our general study in Section 2, we can 
nevertheless derive a relation between Gzz,, and Guz,,1/z. The map Jo*~'(~) 1 

(a) 

0 
0.16 

0 0.5 

N 

0.5 

(b) 
o GZAt3 (o0 

* ot G3,U2 (l/a) 

\ 

\ 
1 2 

O~ 

Fig. 4. (a) The homeomorphism h2,1/3, which conjugates the critical map [see (3.11)] f~2 to 
f~/,3). The insert corresponds to an enlargement of the square A. (b)(�9 The corresponding 
Gibbs free energy G2,~/3(~ ) compared to (*) ctG3,m(1/~); these curves are identical, as expected 
from (3.24). 
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belongs to the universality class 1/z, but its rotation number is - W *  
However, let 3 be the map of the circle ,~: 0 ~ 1 - 0. Then 

f(1/z)_• 1o f ( R )  o f (z  ) 1 o /'(R ) lo. .~ 
.Q* - -  J W *  d g 2 *  J W *  (3.23 

c(1/z) and f~.) l will have Since ~ and the rotation r(R) are smooth, then j o .  J W *  

the same spectrum of singularities. Now f ~ ; ) -  1 and fg.) 1 are conjugated 
via the homeomorphism h~/z,~/~, which is also h2,!. From (2.18) one 
obtains 

G~/=,~/z(a) = aG=,~,(1/a) (3.24) 

Figure 4 illustrates this result for the particular choice z = 2 ,  z ' =  I/3; 
different choices for z and z' lead to the same finding. 

3.5. Homeomorphisms that  Conjugate  T w o  Critical Circle 
Maps in the Universal i ty  Classes z and l[z 

As illustrated in Fig. 5, if one considers the special case hz, l/z, then 
(3.24) yields the following functional equation for Gz,1/z: 

G =,l/z( a ) = aG z, i/~(1/~ ) = G1/z,=( a ) (3.25) 

Besides a direct comparison of Gz, l/z(~) and G1/~.~(a), this relation can be 
verified by taking the logarithm of t(3.25) and checking that Y(a)= 
log[G~,~/z(~)]-�89 is a symmetric function of log(a). As shown in 
Fig. 5b, numerical simulations corroborate this theoretical result. 

Now if one comes back to the measure #z associated with the golden 
mean trajectory generated by a critical circle map with inflection point of 
order z, then a straightforward generalization of (3.10) leads to the 
following prediction for the support of Gz(a): 

0~ E [~min(Z) ,  Cg . . . .  ( Z ) ]  ( 3 . 2 6 )  

with 

a~i,(m~)(z) -- rain(max) { az(0), e~(0)/z } 

a~(0) is related to Shenker's scaling factor agm(Z) by the relation (3.20). 
Figure 6 shows the z dependence of ag,~(z) as computed with the critical 
circle maps (3.11). 

Because f ~ ! -  ~ belongs to the universality class 1/z but has a rotation 
number - W * ,  one can reproduce the argument developed in (3.23) to 
derive, using (2.5), the relation 

az(O ) = za~/=(O) (3.27) 

822/50/5-6-11 
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i.e., from (3.26) that 
supp G~(~) = supp G1/z(~) (3.28) 

This result is illustrated in Fig. 6b, where [~min(Z), ~max(Z)] is plotted 
versus log(z) and shown to be symmetric with respect to the pure rotation 
case z = 1, for which it is zero. 

Because #z is not only invariant under s~*r(z), but also under r~qsa i, 
Gz(~) curve is identical to then, not only the support, but the whole 

G1/z(~), 
Gz(~) = G1/z(~) 

as numerically checked in Fig. 7a. 

1 
(a) 

0 
0 

0.5 

0 

L 

g 

-4 

/ 
0.16 

0.5 
O 

(3.29) 

-I 0 I 
log (00 

Fig. 5. (a) The homeomorphism h3,1/3, which conjugates the critical map [see (3.11)] f~.) to 
f~/,3) The insert corresponds to an enlargement of the square A. (b) Y(~)=log[G3,1/3(~)]- 
log(or)/2 plotted versus log(a). The function Y(~) is a symmetric function, in agreement with 
(3.25). 
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These results were anticipated in Section 2 when investigating the 
homorphisms that conjugate a dynamical system to its inverse and thus 
satisfy h = h -1. In particular, (3.25) is nothing other than an illustration of 
(2.13). Equation (3.29) is an example of two dynamical systems whose 
invariant measures display the same nontrivial spectrum of singularities, 
but which nevertheless are conjugated by a nonsmooth homeomorphism. 
This result is supported by the numerical simulations in Fig. 7, where the 
spectrum of singularities and the generalized fractal dimensions for the 

2 

] 

1.2 L _ ~  J 

0 2 4 6 
Z 

4 - -  

s 

O 

2 

(b) * %o~x 

~  

D O O  D 

o o 
o o 

o 
o o 

o 
o a o o o D 

0 J 

- 2  0 

~ a o o ! 
o a a i 

J J 

l og  (z)  z 

Fig. 6. ( a )  The z dependence of Shenker's scaling factor, (3.4), 7g~(Z) as computed with the 
critical circle maps (3.11): ( o )  ~gm(Z), ( e )  c~e~(1/z ). The fact that the circles and the dots end 
on the same curve provides numerical evidence that C%m(Z ) satisfies the relation (3.32). The 
insert corresponds to an enlargement of C~gm(Z ) in the neighborhood of z = 1. ( - - )  A fit of 
%re(z) with the approximation (3.31). (b) The support [~min(Z), anaax(Z)] of G~V(~) versus 
log(z). Note the symmetry with respect to z =  1, which confirms the prediction (3.28). 
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universality classes 1/5, 1/3, 1/2, 2, 3, 5 are presented, Although the 
discrepency observed in Dz(/~) for z = 2, 3, and 5 is at the heart of the 
universality hypothesis, let us emphasize that in the spirit of this paper, it 
ban also be seen as an illustration of the sensitivity of the spectrum of 
fractal dimensions under nonsmooth changes of variables. 

On the ogre(z) Scaling Factor. From (3.20) and (3.27), it 
immediately follows that 

log 0 ~ g m ( Z  ) = ( l / z )  l o g  0~gm(1/Z ) (3.30) 

1 ~ .  ~ �9 ~215 
~ o 

0.5  o 

~ x = 

iiJ _~ 
7 

0 - - i ~ _ _  
1 

• 

2 

I Z 
O = 1/2 

o = 1/3 

/x = 1/5 

+ = 2  

x =  3 

�9 = 5 

I 

3 

~2 

2 

(b) z = 5 ( 1 / 5 ~ . .  

z = 3 (1/3)  

z = 2 ( 1 / 2 )  

z = l  

J i 

- 5 0  0 5 0  

Fig. 7. (a) The spectrum of singularities G~(c~) versus ~ as computed with the critical circle 
maps (3.11) for z = ( [ ~ )  1/2, (�9 1/3, (z~) 1/5, (+)  2, ( x )  3, and ( e )  5. Note that these 
numerical results strongly suggest that G~V(~) = G~(c0.  (b) The spectrum of fractal dimensions 
Dz(/?) versus/~ for z = 1/2, 1/3, 1/5, 1, 2, 3, and 5. 
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Substituting z = e  ~ in (3.30), we obtain that the function g(~)= 
log[log 7gm(r + ~/2 is a symmetric function of ~. Because C%rn(l ) = W*-1, 
then one can write in a first approximation g(r  l o g [ - l o g  W*] + 0(42). 
Going back to the z variable, this leads to the following expression for 
Shenker's scaling factor in the neighborhood of z = 1: 

0~gm(Z ) "~ (W*) -x/(1/z) (3.31) 

The insert in Fig. 6a shows that this approximation is quite reasonnable for 
z e [0.7, 1.3]. More generally, Fig. 6a also corroborates the relation (3.30), 
which can be rewritten as 

~gm(1/Z) = [0~gm(Z)] z (3.32) 

4. DISCUSSION 

In the preceding section, we examined the implications of the 
formalism developed in Section 2 for the study of the universal properties 
of the quasiperiodic trajectories at the onset of chaos. A similar approach 
can be used to investigate other examples of invariant measures associated 
with one-dimensional dynamical systems. Among the well-known Cantor 
sets let us briefly discuss (1)the 2~-cycle at the accumulation point of the 
period-doubling cascade, and (2)the set of irrational winding numbers at 
the onset of chaos. 

4.1. The 2~-Cycle at the Accumulation Point of the 
Period-Doubling Cascade 

The discovery of the universality of period doublings in one-dimen- 
sional discrete systems (3c~32) is the origin of the analogy between the 
transitions to chaos observed in dissipative systems (2~ and second-order 
phase transitions in equilibrium systems. (33) It is therefore not surprising 
that the main tool employed in critical phenomena, i.e., the renor- 
realization group,(34) has been successfully used to understand the universal 
properties of the scenarios to chaos. As far as the period-doubling cascade 
is concerned, the existence of a fixed point for the renormalization 
operation (23) follows from the observation that the adherence of the 
asymptotic 2~-orbit at the accumulation point of the cascade (of almost all 
initial condition in the unit interval) is a Cantor set. After early 
attempts ~35'36) to measure the Hausdorff dimension Do=0.537... of this 
Cantor set, the whole spectrum of fractal dimensions D~ together with the 
corresponding spectrum of singularities G~= 2(c~) was calculated in Ref. 7 for 
the unimodal quadratic map x ' =  R(1 - 2 x  2) at the critical parameter value 
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R = Rc. As with the example discussed in Section 3.1, the range of e values 
that characterizes the singularity of the corresponding invariant measure is 
determined by the most rarefied and the most concentrated interval in the 
set. It has been shown in Refs. 30-32 that the largest interval of the 2n-cycle 
scales like C~p~, while the smallest one scales like C%v-2n, where ePD = 2.5029... 
is the universal scaling factor involved in the renormalization operation. 
Since the measure of each interval is simply /~n = 2-n, we get from the 
definition (2.21) of the dynamical free energy and the properties of the 
Legendre transform that the support of G~= 2(~) is defined by 

e [log eeD/lOg 2, log aZD/log 2] (4.1) 

Now, if again one uses the relation (2.25) between the dynamical and 
uniform Gibbs free energy, one gets for the range of e values for G~=2(e) 

~ [-log 2/(2 log (ZpD), log 2/log ~PD] (4.2) 

Using the renormalization group prediction for ~PD, one predicts 
~E[0.3777 .... 0.7555..] which is in good agreement with the numerical 
calculation of Gz U_ 2(~z). As emphasized by Halsey et al., (7) the existence of a 
quadratic fixed point for the renormalization group is reflected not only in 
(4.2) but in the universality of the whole spectrum of singularities GzU= 2(~), 
which does not depend on the specific shape of the quadratic map one uses 
to generate the Cantor set. 

Again this result can be checked by investigating the homeomorphism 
that conjugates two critical quadratic maps as in Section 3.3. The result 
obtained when considering the map given in Ref. 7 and the logistic map 
x ' = R x ( 1 - x )  confirms the universality conjecture: the homeomorphic 
conjugacy is found to scale with the same exponent ~ = 1 at each point of 
the Cantor set. The smoothness of the homeomorphic conjugacy extends to 
the case of unimodal maps that are not quadratic but have the same type 
of extremum. This is not surprising with respect to the renormalization 
group analysis, since it is welt established that the order z of the local 
maximum determines universality classes. (23'3~ Moreover, the com- 
putation of the Gibbs free energy Gz,z,(~ ) for z v~ z' strongly suggests that 
the scaling of the homeomorphism that conjugates two maps from different 
universality classes is no longer trivial. A finite range of ~ values is found to 
depend on the specific values of z and z' and thus indicates that the 
associated measure is singular. Upon reproducing the analysis developed in 
Section 3.4, we obtain a similar prediction: 

supp Gz.z,(ct) = [-min, max] {ct~,(0)/~z(0), z'Ctz,(O)/zCzz(O)} (4.3) 

when using the family of critical maps of the interval [ - 1 ,  1]: 
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x ' =  1 - R  tx] ~ (z > 1). From the renormalization group approach one has 
c~(0) = log 2/log ePD, and thus we end with the prediction 

supp G~,z,(~ ) = [min, max] ~flog ~pD(Z) z'log ~pD(Z)'~ 
0 o g  ~I,D(Z') ' Z log ~pD(Z')J 

(4.4) 

Now if we come back to (4.2), we know from previous work (37) that 
~pD(Z) is a decreasing function of z, with l i m ~ l e p D ( z ) =  + ~  and 
lim~ ~ ~ apD(Z) = 1. This implies that the support of G~(e) is a monotone- 
increasing function of z. Indeed, according to Collet et aL, (23'38) for maps 
such that z = l + e ,  it can be shown that ~ p D ( l + e ) = - - e l o g ~ + O ( e ) ,  
which yields 

lim supp G ~  1 +~(~) = [log 2/(2 log( - e  log e)), log 2/log( - e  log e)] (4.5) 
~ 0  

In the opposit limit, the computer-assisted theorem of Eckmann and 
Wittwer (39) states that limz~ o~ ap~(z)= 0.033381, or equivalently apD(Z)= 
l + 3.40/Z + O(1/Z2)/4~ Consequently, the support of G~(~) increases from 
the lower limit (4.5) to the upper limit 

lim supp G~(e) = [(z log 2)/6.80, (z log 2)/3.40] 
z ~ o o  

(4.6) 

We note that the range of e values is thus found to increase linearly in z at 
large z. 

4.2. The Set of Irrational Winding Numbers at the Onset 
of Chaos 

As already discussed in Section 3.1, universality ideas have also had 
some success in describing the transition to chaos for diffeomorphisms on 
the circle. The first example of a universal scaling for critical maps was 
discovered by studying the golden mean trajectories at the onset of 
chaos. (7'15<7) The next example is the universality of the Hausdorff dimen- 
sion Do = 0.87... of the set of irrational winding numbers (which is of zero 
Lebesgue measure) at the onset of chaos. (41'42) The complementary set is 
the set of mode lockings, which is best understood in terms of the devil's 
staircase representing the dressed winding number as a function of the bare 
one [ ~  in the sine map (3.1)]. This global statement has been recently 
questioned, since "the thermodynamics is different from that for the fractal 
sets which scale everywhere geometrically, such as the period-doubling 
attractor. ''(19) The dynamical free energy FD(/~) has been shown to exhibit a 
phase transition between ( i )a  monotonically decreasing behavior at large 
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and negative fl values, where the thinnest intervals located around the 
golden mean (Wn = Fn/Fn+ 1) are dominating and shrink exponentially 
with a universal scale factor /min~b n [-6(z= 3)=2.833612...] (15 17); and 
(ii) a logarithmic convergence (when going further and further into the 
Farey sequence) to FD(fi)=0 at large and positive fl values, where the 
fatest intervals corresponding to the harmonic sequence 1/q~O are 
dominating and shrinks with a power 1aw(41"43'44): lmax'-~q 3. The 
Hausdorff dimension is actually determined by the transition from 
geometric scalings that we know are universal (15 17) to harmonic scalings 
that we know are not. (44) Unfortunately, the application of a numerical 
convergence acceleration algorithm to a variety of cubic circle maps does 
not provide unambiguous evidence for or against the universality of the 
Hausdorff dimension of the set of irrational winding numbers. (19) 

The nonuniversality of the whole spectrum of fractal dimensions of 
this strange set should be easier to verify numerically. Both the dynamical 
and uniform Gibbs free energy have been computed using the sine map 
(3.1) in Refs. 19 and 7, respectively. There exists to our knowledge no 
equivalent computation with different critical cubic maps. From the 
previous discussion it seems that the nonuniversality of the harmonic 
sequence should be manifested more clearly on the increasing branch of the 
dynamical Gibbs free energy (respectively decreasing branch of the uniform 
Gibbs free energy), which is governed by the most rarefied region of the 
fractal set. However, we do not really know how important these non- 
universal effects are or whether they are accessible numerically with the 
convergence acceleration algorithm. In spite of these technical difficulties, it 
is very likely that the formalism defined in Section 2 applies to this fractal 
set, and that the computation of the homeomorphism that maps the sets of 
irrational winding numbers generated by two different cubic maps should 
in principle exhibit a nontrivial spectrum of singularities. 

We have shown in this paper now homeomorphic conjugacies may 
change the local scaling behavior of an invariant measure of a one-dimen- 
sional dynamical system. A straightforward generalization of Section 2 
shows that these results extend to higher dimensions at least for those 
systems that show uniform scaling behavior in the following sense. Let # be 
a probability measure on [0, 1]n; this measure shows exact scaling if 

lim log #(U)/log L(U) = c~(x) (4.7) 
x~U,L(U)~O 

where U is any neighborhood of x in [0, 1 ]". 
To illustrate this result, let y(2) = y(0) + 2e be the straight line passing 

through y(0) with direction e (le[ = 1). Then the probability measure con- 
centrated on this one-dimensional subspace can be written as #(y)= # ( / y )  
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w h e r e / ~ ( / y )  is a condit ional  probability. N o w  if we assume that g scales 
exactly, then the scaling exponent  C~(y)(X) associated to #(y) via the 
relations (1.5) and (1.6) does not  depend on the direction e, which means 
that the measure ~ scales isotropically. 

In general the measure does not  satisfy this condition, e.g., for 
measures that  are concentrated on foliated Cantor- l ike structures, such as 
the Henon  model. (4s) Hence, the scaling along the foliations may be trivial, 
whereas in the other  directions the scaling reflects the Cantor-l ike structure. 
Thus, we expect the isotropic multiplicative interaction (2.7) between the 
scaling exponents to be replaced by much more  complicated nonisotropic  
expressions. We hope to elaborate on this point  in a for thcoming com- 
munication.  
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